Compressed sensing: reconstruction of non-uniformly sampled multi-dimensional NMR data

Mark Bostock and Daniel Nietlispach

Department of Biochemistry, University of Cambridge,

80 Tennis Court Road, Cambridge, CB2 1GA, UK
Abstract

Nuclear magnetic resonance spectroscopy (NMR) is widely used across the physical, chemical and biological sciences. A core component of NMR studies is multidimensional experiments, which enable correlation of properties from one or more NMR-active nuclei. In high resolution biomolecular NMR, common nuclei are 1H, 15N and 13C, and triple resonance experiments using these three nuclei form the backbone of NMR structural studies. In other fields a range of other nuclei maybe used. Multi-dimensional NMR experiments provide unparalleled information content, but this comes at the price of long experiment times required to achieve the necessary resolution and sensitivity. Non-uniform sampling (NUS) techniques to reduce the required data sampling have existed for many decades. Recently such techniques have received heightened interest due to the development of compressed sensing (CS) methods for reconstructing spectra from such NUS datasets. When applied jointly these methods provide a powerful approach to dramatically improve the resolution of spectra per time unit and under suitable conditions can also lead to SNR improvements. In this review we explore the basis of NUS approaches, the fundamental features of NUS reconstruction using CS and applications based on CS approaches including the benefits of expanding the repertoire of biomolecular NMR experiments into higher dimensions. We discuss some of the recent algorithms and software packages and provide practical tips for recording and processing NUS data by CS.
Keywords

Compressed sensing; multidimensional NMR; signal processing; sparse sampling; non-uniform sampling
Introduction

Nuclear magnetic resonance (NMR) spectroscopy is widely used as an atomic resolution structural technique across the physical, chemical and biological sciences. Essential to the information content provided by NMR spectroscopy is multidimensional experiments, which correlate information from NMR-active nuclei allowing the identification of spin networks that are connected for example through-bonds (J-coupling) or through space (NOE transfer).

All multidimensional experiments require an ‘indirect’ evolution period where on successive repetitions of an experiment a delay time is increased by a certain, typically fixed increment, during which free precession of the spins is monitored. For each additional dimension, an extra indirect evolution period is required, and thus an N-dimensional NMR experiment will have $N - 1$ independent incrementation (evolution) periods, typically known as the indirect dimensions. It is the requirement to sample the frequencies present in each of these ‘indirect dimensions’ independently which leads to the often lengthy experiment times required for multidimensional NMR. In biomolecular NMR, a typical 2D can be expected to take on the order of hours, 3Ds days and 4Ds weeks, a problem exacerbated by the shift to higher magnetic fields. The time-consuming requirement to sample the indirect dimensions independently therefore often results in experiments that have sub-optimal resolution.

Consequently, for almost as long as multidimensional experiments have been employed, efforts to reduce the experiment times have been devised. The many approaches have focussed on reducing the number of points recorded in each indirect dimension whilst acquiring the same, or higher resolution, and this is variously known as sparse sampling, non-uniform sampling or undersampling of data. As discussed below, the Fourier transform (FT) can no longer be used to process undersampled data and subsequent efforts have focussed on alternative approaches to reconstruct the frequency domain. Broadly speaking, these alternative reconstruction approaches fall into two categories; those which use non-uniform and non-deterministic sampling of the indirect dimensions, and those which have restrictions on the sampling pattern
i.e. Nyquist sampling (e.g. for Linear Prediction) or use a non-uniform deterministic sampling scheme e.g. coupled evolution for reduced dimensionality methods (1). Methods which can use data with non-deterministic sampling are the most general and can typically reconstruct data from any of the categories (2). The results of such alternative processing methods may either produce a full multidimensional spectrum, or alternatively the raw data may be analysed to provide information on signal frequencies e.g. APSY (3), GFT-NMR (4) and PRODECOMP (5).

Recently, compressed sensing (CS)-based reconstructions have joined the family of non-deterministic techniques which reconstruct a full frequency-domain spectrum. CS was developed in information theory (6,7), although the underlying concepts have been known for many decades (8), and has become popular in a wide range of fields including magnetic resonance imaging (MRI) (9,10) as well as diverse areas from astronomy and astrophysics (11), to super-resolution microscopy (12) and computerised tomography (13) as well as other spectroscopies e.g. optical spectroscopy (14). The value of CS-based reconstructions for undersampled NMR data was demonstrated in 2011 (15,16) and since then a range of applications, algorithms and software packages has been developed for NMR spectroscopists (17–26). In this article, we review Fourier transform sampling theory and explain the modifications used for NUS sampling. We highlight the challenges of reconstructing such NUS spectra, and explain the basic theory behind CS-based reconstruction approaches. We demonstrate the benefits of CS reconstructions of NUS data and review a number of commonly used CS algorithms, discuss suitable sampling strategies, and provide some practical tips for reconstructing data, as well as highlighting the various data-processing packages available.

Fourier transform and Nyquist theory

An NMR signal results from the precession of magnetization detected as an induced current oscillating at a given frequency, Ω, which can be represented as a complex exponential. The magnitude of this oscillating signal decays over time, due to relaxation phenomena and the characteristic lifetime of a spin is typically represented by its decay constant, R_2. For a complex
multi-spin system, many signals of variable intensities and frequencies sum to give the overall appearance of the free induction decay (FID):

\[S(t) = \sum_{k=1}^{N} S_k \exp(-i\Omega_k t) \exp(-R_{2k} t) \]

where \(k \) represents each individual frequency component with amplitude \(S_k \), oscillation frequency \(\Omega_k \) and decay rate \(R_{2k} \).

The FID is a continuous function, however, NMR data acquisition detects a discrete signal, which is achieved by sampling the FID at regular intervals. The relationship between sampling rate and the frequency range that can be correctly represented is given by the Nyquist theorem which states that the maximum observable frequency is determined by the sampling rate, given by:

\[SW = \frac{1}{\Delta t} \]

where \(\Delta t \) represents the time increment between sampled points, otherwise known as the dwell time. Signals with a frequency higher than the maximum observable frequency, \(\pm SW/2 \), will appear aliased at a lower frequency. This is illustrated in Figure 1 where it can clearly be seen that a sinusoid with a higher frequency (orange curve) than the maximum detectable frequency (based on the sampling rate, red squares) will be indistinguishable from a lower frequency signal, and will appear aliased in the spectrum. To correctly identify the higher frequency signal, the sampling rate must be increased (black crosses). Consequently, the Nyquist theorem determines the sampling rate required for NMR experiments.

In order to observe the contributing spectral frequencies, the Fourier transform is used to convert time-domain data into the frequency domain. For a complex signal the discrete Fourier transform is as follows:

\[S_k(\omega) = \sum_{n=0}^{N-1} S(n\Delta t) \exp(-2\pi i kn/N) \]
where Δt is the sampling interval, $S(n\Delta t)$ are complex numbers representing the time-domain signal at each time point, $S_k(\omega)$ is a series of complex numbers representing the frequency domain signal where $k \in [0, N - 1]$, and equation (3) is N-periodic in k. Thus in addition to the requirement to sample at the Nyquist rate as discussed above, equation (3) indicates that samples must be recorded uniformly i.e. for $N - 1$ regularly spaced time intervals in order to preserve the orthogonality of the complex exponentials (27):

$$\sum_{n=0}^{N-1} \exp(2\pi i (k - k')n/N) = 0, k \neq k'$$

Consequently, an NMR experiment requires a regularly spaced series of points to be acquired at the Nyquist sampling rates for each dimension, with all points sampled uniformly up to the maximum acquisition time. Ignoring the directly acquired dimension, for an N-dimensional experiment ($N - 1$ indirect dimensions) with k_n points in the n^{th} indirect dimension, this amounts to acquisition of

$$2^{N-1}k_1 \times k_2 \times k_3 \times \ldots \times k_n$$

points in the indirect dimensions, or alternatively repetitions of the experiment. The factor of 2^{N-1} represents the requirement for frequency discrimination with a pure phase absorptive line shape, often implemented via quadrature detection, clearly demonstrating the rapid increase in sampling requirements with additional dimensions.

In addition to the requirements to sample regularly at the Nyquist rate, spectral resolution must also be considered. Spectral resolution is determined by the maximum acquisition time, which determines the ability to distinguish closely spaced peaks as shown in Figure 2. For a non-decaying signal, resolution can theoretically be increased indefinitely by sampling to longer acquisition times. However, due to the exponential decay term in equation (1), in practice beyond a certain acquisition time, only noise will be detected. The natural linewidth of peaks, at half-maximal intensity, is given by:
\[L = \frac{R_2}{\pi} \]

Assuming the number of points \((N)\) in the spectrum and time-domain are the same (i.e. assuming no zero-filling) the spectral resolution \((\Delta f)\) is given by (28):

\[\Delta f = L \left(\frac{\pi}{R_2} \right) \left(\frac{1}{N \Delta t} \right) = L \left(\frac{\pi R_2^{-1}}{t_{\text{max}}} \right) \]

and \(t_{\text{max}} (= N \Delta t)\) is the maximum delay time in a given dimension. Equation (7) indicates that the optimum resolution is achieved when \(t_{\text{max}} \sim 3R_2^{-1}\) or \(3T_2\); at this point, the resolution is determined by the natural linewidth, \(L\). However, it has been shown that signal-to-noise ratio (SNR) only increases up to \(t_{\text{max}} \sim 1.26T_2\) (28), i.e. collecting additional samples after this point to improve resolution will degrade the SNR. Consequently, using conventional, uniform sampling, maximum resolution cannot be achieved without substantially reducing SNR or conversely increasing the number of scans.

An additional consideration arises from the widespread introduction of high-field NMR spectrometers. For example, a typical \(^{13}\)Cα dimension covering 20 ppm at 600 MHz, corresponds to a frequency range of 3000 Hz requiring \(\Delta t = 0.33\) ms. In the absence of any \(J_{\text{C-C}}\) couplings and assuming sampling to 1.26\(T_2\), with \(R_2 \sim 50\) Hz \((T_2 = 20\) ms\), the dimension must be sampled out to \(t_{\text{max}} = 25.2\) ms i.e. \(\sim 76\) points. To acquire the same spectral width of 20 ppm at 1 GHz would require a frequency range of 5000 Hz and \(\Delta t = 0.2\) ms. Assuming sampling to the same \(t_{\text{max}}\) (25.2 ms), \(\sim 126\) points are required i.e. a factor of 10/6 increase in sampling requirements (Figure 3). A similar effect will be observed for each indirect dimension, leading to an increase in the number of points by \((10/6)^{N-1}\) for an \(N\)-dimensional experiment in order to maintain the equivalent resolution at higher fields.

As a result of the challenges described above, the result is that the majority of high dimensional experiments cannot be sampled appropriately to optimise both SNR and resolution.

Sampling and sensitivity-limited regimes
Two limiting regimes can be identified in NMR experiments, known as “sampling limited” and “sensitivity-limited” regimes (29). In the former, the experiment time is determined by the need to sample out to high resolution in multiple indirect dimensions; SNR is assumed to be sufficient. In the sensitivity-limited regime, the limiting factor is the intrinsic sensitivity of the experiment or the sample concentration and so experiment time is typically spent acquiring sufficient scans to ensure appropriate SNR. The most likely scenario, however, is a compromise between these two regimes, with a trade-off occurring between experiment time, resolution and SNR. For large proteins, this may result in poor quality spectra with significant overlap, increasing the challenges for assignment and structural studies, and limiting the potential benefits of multidimensional experiments.

NUS sampling and convolution theorem

In order to circumvent the challenges discussed above, alternative approaches for sampling the indirect dimensions of multi-dimensional experiments were proposed in the early days of multidimensional NMR: Barna et al. proposed a randomised exponentially decaying sampling scheme concentrating most points at early evolution times where SNR is high, and sampling fewer points at long acquisition times to increase resolution (30). This approach has been developed by various authors but it was recently shown that randomisation of the sampling schedule is essential for high quality reconstructions (2), whilst a modification of the exponential sampling approach which weights the gaps between acquired points according to a Poisson distribution has recently gained popularity (31).

All such undersampling schedules allow a reduction in the total number of points required and hence experiment times, while potentially obtaining higher resolution. However, the Fourier transform can no longer be used to process data (Figure 4). This can be understood by considering the convolution theorem for Fourier transforms. In the following, \(t \) represents the time domain, \(\omega \) the frequency domain, \(* \) indicates a convolution and \(F \) is the Fourier transform:
In words, this indicates that the Fourier transform of the pointwise product of two time domain functions is the convolution of their Fourier transforms. We can consider an undersampled FID (with zeros replacing the missing data points) (Figure 4e) to be the product of a fully-sampled FID (assuming N points regularly spaced according to the Nyquist theorem) (Figure 4a) and a sampling schedule (Figure 4c) where 1s represent sampled points and 0s skipped points, and the number of sampled points, \(M < N \). If we consider the equivalent frequency domain spectrum, using equation (8), the FT of the undersampled FID (Figure 4f, red) is equivalent to the convolution of the FT of the fully sampled spectrum (Lorentzian lines) (Figure 4b) with the point spread function (PSF, the Fourier transform of the sampling schedule) (Figure 4d). The convolution is shown in blue in Figure 4f. The consequence, as indicated in Figure 4 is that every ‘real’ peak in the undersampled spectrum introduces an artefact pattern resulting from the PSF. Clearly, as the number of ‘real’ peaks increases, the artefact pattern becomes progressively more complicated. The aim of all non-deterministic reconstruction methods is to separate the ‘real’ peaks from the PSF artefacts, which is often achieved by reducing the PSF artefact level. It should be noted that this can be further supported by choosing a sampling schedule that minimises the intensity of artefacts in the PSF as this will also lead to a reduced artefact level in the final reconstruction.

NUS reconstruction methods

Since the earliest application of non-uniform sampling approaches, a wide range of reconstruction methods have been proposed to overcome the limitation of the Fourier transform. The simplest approach, as described above, is to replace the ‘skipped’ data points with zeros and then use the discrete Fourier transform. This is an example of a non-uniform Discrete Fourier Transform (nuDFT) and is equivalent to minimising the \(\ell_2 \)-norm (equation (9)) for the spectrum (Parseval’s theorem) (20).
A range of subsequent nuDFT algorithms use the predictability of the artefact pattern to remove artefacts from the most intense peaks and to reveal weaker peaks. Repeated iteratively, this can effectively clean up an undersampled spectrum. Examples of this approach include the MFT method (32), FFT-CLEAN, based on earlier work in radio-astronomy (33,34), SCRUB (35) and the signal separation algorithm (SSA) (36).

Reconstruction using Maximum Entropy (MaxEnt) was introduced into NMR in the 1980s (37) with early application to undersampled data (30,38) and more recently the value of MaxEnt for 3D data was demonstrated (39). Maximum entropy reconstruction has been reviewed in detail previously (40) and also in this journal (41).

Another popular approach is multidimensional decomposition (MDD), which is based on fitting 1D vectors to experimental data (42–44), with later developments including recursive MDD (rMDD) (45) and coupled MDD (Co-MDD) (46).

Another class of methods involves taking projections through a multidimensional dataset via coupled evolution of the indirect dimensions (radial sampling) and reconstructing either a full spectrum or peak lists based on this information. These methods include reduced dimensionality (47), projection reconstruction (48), GFT-NMR (4,49) and APSY (3) amongst others. Recently it was shown that reconstructing full spectra from radial samples introduces artefacts specific to the projection sampling, which can be reduced by further randomisation of the sampling schedule (2). Analysis of such projections is particularly useful for high dimensionalities. Many other methods have been introduced over the years which are discussed in other reviews (1,50).

In recent years, an approach to full spectrum reconstruction from undersampled data, has been proposed based on compressed sensing (CS) theory, developed in information theory (6–8). CS has become popular in a number of fields, notably in MRI (9). CS reconstructions have
similarities to approaches such as CLEAN (34) but are based on a rigorous mathematical theory and consist of a family of algorithms with varying properties. In what follows, we discuss basic CS theory, give examples of some of the most promising algorithms available and discuss practical approaches for successful CS reconstructions of undersampled NMR data.

CS theory

In this section, we provide a brief introduction to the theory underpinning CS reconstructions. Using matrix notation, NMR data can be represented as a system of linear equations:

\[Ax = b \] (10)

where \(x \) represents the frequency domain, \(b \) the time domain and \(A \) is the inverse Fourier transform. For fully-sampled data, \(A \) is an \(M \times N \) matrix, and \(x \) and \(b \) are vectors of length \(N \) and \(M \) respectively, where \(M = N \). Consequently equation (10) has a unique solution. However, for undersampled data, \(M < N \) and thus equation (10) is incompletely determined and has no unique solution. The challenge for all reconstruction techniques handling undersampled data is to find the ‘right’ solution when equation (10) is underdetermined. This is typically achieved by introducing additional assumptions e.g. maximising the entropy, knowledge about regions with/without peaks etc.

Compressed sensing theory assumes that \(x \) can be reconstructed exactly by minimising the \(\ell_0 \)-“norm” for \(x \), equivalent to choosing the sparsest solution:

\[\min_x \|x\|_0 \text{ subject to } Ax = b \] (11)

where the \(\ell_0 \)-“norm” is:

\[\|x\|_0 = \sum_i |x_i|^0 \] (12)

It can be clearly seen that this is equivalent to counting the number of non-zero elements, assuming that we define \(0^0 = 0 \) (7), and thus by minimising this function, we will minimise artefacts generated by convolution with the PSF. Assuming \(x \) is \(k \)-sparse, we can reconstruct
this from \(\sigma(k) \) random points, where \(k \)-sparse is defined as having no more than \(k \) nonzero components. However, the solution to equation (11) is typically not computationally tractable (51) and so is not a practical solution. Nevertheless, CS theory states that by taking slightly more samples, minimising the \(\ell_1 \)-norm, which is solvable using readily available algorithms, gives the same solution:

\[
\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \mathbf{Ax} = \mathbf{b}
\]

where the \(\ell_1 \)-norm is given by:

\[
\|\mathbf{x}\|_1 = \sum_{i} |x_i|
\]

which is equivalent to the sum of all the points in \(\mathbf{x} \). In this case the sampling requirement has the following relationship (6):

\[
M \geq Ck \log N
\]

In equation (15) \(C \) is a universal constant, which depends mostly on the reconstruction algorithm. In general \(C \) is difficult to calculate and this is rarely done. Theoretically \(k \)-sparsity assumes recovery of \(k \)-non-zero elements. In reality most situations are not truly sparse, but instead are compressible i.e. \(k \) significant coefficients which should be recovered. \(k \) thus represents points rather than peaks. While it is not possible to use equation (15) to predict the exact number of samples required for a given spectrum, and it should also be noted that equation (15) represents a lower bound, it can be used to understand the general sampling requirements. Since equation (15) has a log dependence on the size of the spectrum (\(x \)), this indicates that the primary determinant of the required number of samples, \(M \), is the sparsity of the spectrum, \(k \), not its final size. We will see the great benefit of this later. [Include box on norms around here]

NMR spectra cannot be solved exactly using equation (13). Instead, this is typically modified to take account of noise in the spectrum by relaxing the constraint giving:
\begin{equation}
\min_{x} \|x\|_1 \text{ subject to } Ax - b \leq \delta
\end{equation}

where \(\delta \) is an estimate of the noise in the data.

Thus in order to consider CS reconstruction of an undersampled spectrum, the spectrum must be sparse and sampled with an incoherent sampling scheme i.e. randomised to minimise \(\mu \). It is important to keep these two factors in mind when considering \(M \), the appropriate sampling fraction to record.
Norms

A norm uses a certain criterion to assign a positive length to a vector (aside from the zero vector). Different norms use different criteria to define the lengths of vectors. The ℓ₂-norm (sometimes known as the Euclidian norm) is the ‘ordinary distance’ from the origin to a point and is given by a generalisation of Pythagorus’ theorem. For complex numbers, the complex modulus is used,

\[|x_k| = \sqrt{x_k^*x_k}. \]

The ℓ₂-norm is defined as:

\[|x| = \sqrt{\sum_{k=1}^{n} |x_k|^2} \] \hspace{1cm} (17)

The vectors satisfying a given value of the ℓ₂-norm in 2D map out of circle of radius |x| and by extension an n-sphere for an n-dimensional vector.

The ℓ₁-norm is sometimes known as the Taxicab or Manhattan norm and in 2D reflects the distance from an origin to a point using a rectangular grid. The ℓ₁-norm is defined as:

\[\|x\|_1 = \sum_{i=1}^{n} |x_i| \] \hspace{1cm} (18)

The set of vectors satisfying a given constant for the ℓ₁-norm map out a square with vertices lying on the coordinate axes. For a radius of 1, this is defined by |x| + |y| = 1.

The ℓ₀-“norm” (7) is not a true norm and requires the definition \(0^0 = 0\). Hence, this represents the number of non-zero entries in a vector.

Finally the ℓₚ-norm is given by:

\[\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \] \hspace{1cm} (19)

For \(0 < p < 1\), the p-norm is not a true norm since it no longer satisfies the triangle equality that the length of the sum of two vectors is less than or equal to the sum of the lengths of the two vectors i.e. \(p(x + y) \leq p(u) + p(v)\). However, we will find this is useful as an approximation to the ℓ₀-“norm”.

\[\]
CS Algorithms

A variety of algorithms are available for CS processing of NMR spectra. Broadly speaking, these can be divided into two groups: those which minimise the ℓ_1 norm, similar to equation (13), and those which minimise a reweighted p-norm where $p \leq 1$, potentially allowing an approximation to the ℓ_0-“norm”. In the former category are algorithms such as iterative soft thresholding (IST) and iterative hard thresholding (IHT), while the latter category includes the iteratively reweighted L1 (IRL1) and least squares (IRLS) implementations. Other target minimisation functions have also been suggested e.g. Gaussian-smoothened ℓ_0-“norm” (52) but these have not gained widespread use. IST exists in two main flavours in the NMR literature (23,52) either providing strict accordance with the measured data at each iteration (IST-S) (16,52,53), or keeping a balance between sparsity and measured data (IST-D) (19,54). The IST algorithm used by the authors in (18) is similar to the IST-S algorithm, while the IHT algorithm is similar to the IST-D approach, but with a hard threshold. Subsequent modifications in the Cambridge CS software (see Data processing section) are a combination of the IST-S and IST-D approaches. Along with IHT, these algorithms all use a thresholding approach to extract ‘true’ signals and then an inverse FT step (IFT) to remove the contribution from these components, and the contributing noise due to the convolution of these signals with the PSF. Repeated iteration leads to a spectrum with considerably reduced artefacts. Thus these methods give comparable results. Clearly a key consideration for such iterative algorithms is convergence (53). Various stopping criteria have been suggested ranging from very simple approaches e.g. a maximum number of iterations, through to more sophisticated approaches which may aim to detect when the residual contains only noise or when no new signals are being added to the spectrum. Many of the available software packages contain automated stopping criteria which typically perform well, however, reconstruction quality maybe improved in some cases by altering these criteria.

The reweighted approaches reformulate the ℓ_1 minimisation into a weighted minimisation (52,55) e.g. for IRL1:

$$\min_{x} \|Ax - b\|_p + \lambda \|x\|_0$$
\[||x||_1 = \sum w_i x_i \] \hspace{1cm} \text{(20)}

where:

\[w_i^{n+1} = \frac{1}{|x_i|^n + \varepsilon} \] \hspace{1cm} \text{(21)}

\(n \) represents the iteration number and \(\varepsilon \) is used to avoid dividing by zero. In the IRLS approach (16,23,56) weights are set to:

\[w_i = |x_i|^{p-2} \] \hspace{1cm} \text{(22)}

Thus, in IRLS, the weighted norm allows the \(p \)-norm to be expressed as an \(\ell_2 \)-norm which can then be solved as a least squares problem:

\[||x||_p^p = \sum |x_i|^p \] \hspace{1cm} \text{(23)}

\[||x||_p^n = \sum w_i |x_i|^2 \] \hspace{1cm} \text{(24)}

An additional modification (57) allows the \(p \)-value to be reduced on successive iterations enabling an approximation to the \(\ell_0 \)-"norm". Although IRLS is more computationally demanding, and thus typically slower than IST, it has been suggested that it provides better reconstructions at lower sampling levels (20,58,59). Applications using these two main groups of algorithms will be discussed further below.

More recently low-rank reconstruction has been proposed as a high-fidelity algorithm suitable for reconstructing NMR spectra, in particular for low intensity, broad peaks (60,61). The low-rank approach attempts to reconstruct a spectrum with the fewest peaks, compared to CS which minimises the number of non-zero values, and is independent of the line widths of the peaks. Low rank reconstruction solves the following equation:
\[
\min_{x} \| Rx \|_* + \frac{\lambda}{2} \| y - Ux \|_2^2
\]

where \(y \) is the undersampled time-domain data, \(x \) is the fully-sampled time-domain signal and \(U \) is the undersampling operator, converting a fully sampled FID to an undersampled FID. \(R \) converts \(x \) to a Hankel matrix, \(X = Rx \), where \(X \) is low-rank. The nuclear norm, \(\| Rx \|_* \), or sum of the matrix's singular values (62), represents the number of frequency oscillations in the FID and thus quantifies the number of peaks in the spectrum. \(\lambda \) balances the data consistency term with the low rank term. Results suggest that low rank reconstruction provides greater fidelity for broad, low intensity peaks than CS reconstruction. By assuming sparsity in terms of peaks rather than values, low-rank reconstruction is very well adapted to NMR spectra, which become strictly sparse under this assumption (23). However, to date, available implementations of the low rank method are slower than other CS algorithms and limited to 2D data, although more recent algorithms have demonstrated extension of this approach to higher-dimensional spectra \(\geq 3D \) (61).

Compressed sensing: examples and its benefits

Early work with applications to a range of 2D and 3D experiments demonstrated the fidelity of the reconstruction method in terms of peak positions and peak intensity (15,16). In the context of triple resonance experiments, CS was shown to provide improved reconstruction of weaker peaks, compared to an existing MaxEnt implementation (15). Subsequently, application to 3D \(^{15}\text{N} \) NOESY experiments was demonstrated, which present a particular challenge due to the high dynamic range and substantial overlap of signals and the requirement to accurately reconstruct the intensities of the information-rich weaker cross peaks (18,19). A variety of \(\ell_1 \)-norm minimisation algorithms were shown to provide fast and accurate reconstructions of NOESY data across a range of peak intensities, with the required sampling fraction dependent on the complexity of the spectrum as expected from equation (15). An example reconstruction of a 3D
1H,15N NOESY-HSQC for the membrane protein sensory rhodopsin II (pSRII) is shown in Figure 5 using the IHT algorithm, demonstrating the fidelity of intensity and peak reconstruction.

A longstanding benefit of NUS techniques is to enable improved resolution by allowing sampling to considerably higher $t_{\text{1,max}}$ values than would otherwise be accessible using an equivalent uniformly-sampled FT-processed version. This was proposed as a key benefit of NUS approaches in the early days of NUS methods (38) and has been previously demonstrated in the context of MaxEnt reconstructions of 3D-NUS triple resonance spectra (39). Nevertheless even using NUS approaches, triple resonance 3D backbone experiments are still typically recorded with modest spectral resolution due to time constraints. Recently a detailed comparison (63) was made to investigate different approaches for extending resolution in multidimensional experiments focussing on linear prediction or IST-based (53) extrapolation of uniformly sampled data versus IST reconstruction of NUS data sampling out to high resolution, combined with further IST based extrapolation (up to maximum 4^*T_2), demonstrating the benefits of combined CS-based interpolation and extrapolation. The authors suggest that optimum sensitivity, resolution and frequency reconstruction are achieved by acquiring data to 0.5^*T_2 with further improvements to linewidth by extrapolating to 2^*T_2. Although this study focussed on the hmsIST processing method it is likely that the recommendations are more general, and are indicative of resolution improvements that can be accessed with CS-NUS reconstructions.

Figure 6 shows a comparison of two time-equivalent 3D NUS-HNCA semi-constant time experiments (64) recorded on a 0.5 mM sample of OppA (2H,13C,15N), a 60 kDa protein with a correlation time of 29 ns at 298 K. Each experiment was recorded for 7 h using NUS to acquire a combined total of 350* complex points in the 15N and 13C indirect dimensions. Three reconstructions are shown in Figure 6. A low resolution NUS CS-reconstructed experiment (15N $t_{\text{1,max}}$ of 12.2 ms equivalent to 0.25*T_2) (magenta) is further extrapolated to 15N $t_{\text{1,max}} = 24.4$ ms (0.5*T_2) (green) using CS-IHT reconstruction leading to a moderate resolution improvement that partly results from the shift of the apodization function towards the later time points.
Further reductions in linewidth could be achieved by extrapolation to even longer $t_{1\text{max}}$ values. In this case, however, higher resolution was obtained in a second experiment by altering the sampling schedule to acquire up to $t_{1\text{max}} = 60$ ms (1.25^*T_2) in 15N. The improvement in linewidth in Figure 6a is considerable (cyan) and the benefit is demonstrated in Figure 6b where peak contributions from different residues are now clearly separated due to the higher 15N resolution, removing the ambiguity in assigning the two residues shown. While the increase in resolution reduces ambiguities in spectral assignment, sampling to this longer $t_{1\text{max}}$ does not substantially alter the SNR (Figure 6c), measured as a signal-to-threshold ratio relative to the contour level at which peaks can be recognised with sufficient confidence (15).

As discussed above, the available CS algorithms can be divided into convex and non-convex minimisations. IRLS has proved particularly popular from the non-convex minimisation class with applications including measurement of scalar and residual dipolar couplings (24) as well as in more traditional undersampled spectra (16,65). It is suggested that use of IRLS may allow the optimal solution to be found with fewer measurements than for the ℓ_1-norm (58) and in some cases may outperform IST, although IST has lower computational requirements, which may be an important consideration for large datasets (20). Further improvements in reconstruction quality may be obtained with the addition of virtual echo reconstruction (22).

More recently a number of authors have suggested reducing the number of quadrature components acquired per time coordinate by random acquisition of quadrature components. This is variously known as random phase detection (RPD), random quadrature detection (RQD) and partial component sampling (66,67) and has also been implemented in the context of CS reconstructions with extension to gradient-selected experiments (17). This gives further flexibility in the design of sampling schedules, allowing bias of the sampled points towards time, rather than quadrature components.

Higher dimensions
Typical uses of CS reconstructions allow improved resolution and SNR and/or time savings for existing NMR experiments. Consequently, CS, along with other NUS-based reconstruction methods facilitates the use of higher dimensional experiments. A range of higher dimensional experiments ($\geq 4D$) has been proposed, including some with dedicated processing methods (34,35,43,46,68–72). Here we focus on the advantages of 4D experiments over existing 3D experiments. Although 4D experiments existed before the widespread use of NUS, undersampling techniques allow their full potential to be achieved by extending $t_{1,\text{max}}$ while still acquiring the experiment in a reasonable amount of time. As shown in equation (15), sampling requirements scale approximately as $k \log(N)$. As described in the section “CS theory”, k-signals refers to k significant components in the reconstruction domain and thus a single peak will be described by a number of signals. Since in typical NMR situations the direct dimension is fully sampled and processed with the Fourier transform, and CS reconstructions are usually carried out as separate reconstructions of the $n - 1$ indirect dimensions for each point in the direct dimension, N is therefore the number points in the indirect dimensions of the reconstruction (frequency) domain. In addition, this means that the sparsity will be affected by the distribution of signals across the direct dimension. Although k is difficult to predict in practical situations and C in equation (15) is not usually known, we nevertheless use the form $k \log(N)$ with hypothetical values for illustrative purposes. Taking the example of a 3D experiment with $k = 1000$ and $N = 128 \times 128 = 16384$ points, approximately 4200 measurements need to be made across the indirect dimensions, i.e. 25%. Based on practical experience, we and others observe substantially lower sampling requirements for 4D spectra (19). This can be explained using equation (15) assuming that on separating the data into a fourth dimension there is no substantial change in k. This assumption is reasonable as each peak observed in the 3D experiment will only occupy a small fraction of the additional planes in the fourth dimension. Therefore taking $k = 1000$ again and $N = 128 \times 128 \times 128 = 2,097,152$ points would be required for an FT experiment, but only 6300 measurements required for an NUS experiment with CS reconstruction i.e. 0.3% sampling. Even accounting for a small increase
in k, this still brings recording times for 4D experiments into the region of a 3D, while allowing substantially longer $t_{1,\text{max}}$ values for the indirect dimensions compared to time-equivalent fully-sampled experiments. Importantly, through NUS, 4D experiments can be recorded with good resolution in a realistic time frame while the fully sampled versions necessitate a substantial reduction in resolution that limits their usefulness.

The addition of a fourth dimension can provide many opportunities for example, by reducing ambiguity in assignments due to the addition of an extra frequency axis and reducing strong overlap e.g. for large proteins. An example of an NUS 4D HCCH NOESY experiment, recorded on a highly deuterated selectively ^{13}C ILVA-labelled methyl-protonated sample is shown in Figure 7, using 1000 points from 12480 complex points and 40 scans, equivalent to 8% sampling, with an experiment time of ~4.5 days. This example emphasises that a high-quality 4D NOESY can be recorded in under 5 days. Although a relatively moderate resolution was chosen in this example, the resolution could be improved by choosing alternative sampling schedules. 4D ^{13}C NOESY sequences employ two HMQC/HSQC elements separated by a NOESY mixing period with either -^{13}C-^{13}C- or -$^{13}\text{C}^{15}\text{N}$- variants (71). The inclusion of a 2D heteronuclear correlation sequence before and after the NOE transfer significantly simplifies assignment as shown in Figure 7 where comparison with a 2D ^{13}C HMQC experiment allows easy assignment of the diagonal and cross-peaks, in contrast to the equivalent 3D H(C)CH or (H)CCH experiments. Dramatic improvements in resolution can be achieved by further increasing the evolution periods or by recording an RQD-NUS experiment. In the latter case detection of only one quadrature component per complex point in the indirect dimensions allowed the resolution to be approximately doubled in each indirect dimension in the same experiment time, resulting in the observed higher resolution (17). This could equivalently be achieved by sampling to higher resolution in the NUS experiment, using an alternative choice of sampling schedule, although it has been previously suggested that biasing the sampling schedule towards time- rather than quadrature-components may have advantages for the reconstruction quality (17). Therefore, RQD offers additional flexibility in defining a sampling schedule.
Practical tips

Data acquisition

An essential component of acquiring undersampled NMR data is choosing an appropriate undersampling scheme. This requires careful selection of both the sampling fraction, which is related to the sparsity of the spectrum (i.e. number of signals expected), as well as the distribution of points. Early work in the field proposed exponentially biased schemes allowing acquisition of more high SNR data points at early time points while maintaining some longer time points to provide sufficient resolution (30). More recently, sine-weighted Poisson gap sampling (SPS) has been proposed, which maintains the biased selection of data points, but minimises variability between different randomly generated sampling schedules (31). Sampling using a Poisson-disk algorithm has also previously been proposed (73). Using Poisson sampling is likely to minimise the chance of generating a "bad" schedule for a given set of input criteria. Poisson gap schedules can be generated using the hmsIST Schedule generator (74) (a version with more advanced options is available at http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_old.html (13)) or using nussampler as part of the MDD software package (75). Some guidelines have been suggested in the literature for appropriate sampling levels (13,18), which may prove useful as a starting point. However, two important caveats must be considered. (i) As discussed earlier, equation (15) shows that the sampling requirement is directly proportional to the sparsity, and proportional to log N where N is the number of points. Thus a particularly crowded spectrum will require more samples than a less crowded spectrum. (ii) Percentage sampling factors can be misleading as they reflect the proportion of the total fully sampled grid which is selected; thus a very high resolution spectrum could show a very low sampling percentage, but a lower resolution spectrum of the same protein would need a similar number of samples (based on equation (15)) giving a much higher percentage.
The best way to determine a suitable sampling level is to process a comparable fully-sampled experiment with several different undersampling schemes with different fractional sampling levels, using the desired reconstruction method, and to assess the spectral quality against the fully-sampled FT spectrum. This can be done using many of the available software packages.

When selecting a sampling schedule it is important to sample the first time-point in all the indirect dimensions as this can help with phasing for the direct dimension, and allows the data collection to be checked as the first point should be equivalent to a fully-sampled experiment. It is often useful to record a data point at the maximum increment in all indirect dimensions, as this allows easier identification of the maximum data size. As discussed earlier, randomisation (i.e. reducing regularity in the sampling schedule) typically reduces artefact levels (2) while clumps of data points, with large gaps elsewhere in the schedule should also be avoided, particularly if these occur at the beginning and end of the schedule (largely achieved by weighted Poisson sampling) (31). Exponential schedules can be generated using the NUS Schedule Tool, which provides a helpful GUI to visualise schedules, while the MDD-NMR nussampler provides options for Poisson sampling with matching to J-coupling or exponential decays (75,76). Note that constant time dimensions do not need any decay and this option can be selected for appropriate dimensions in the various schedulers available (although the authors of SPS sampling still recommend a sinusoidal weight of 2).

Data processing

A variety of software packages are available for CS reconstructions. These include:

- hmsIST

hmsIST comes from the Wagner lab (19) and is available on request. hmsIST functions as part of the NMRPipe workflow. A useful resource discussing NUS approaches, sampling schedules, pulse programmes and a tutorial on data processing using nmrPipe and hmsIST is available at http://gwagner.med.harvard.edu/intranet/hmsIST/
• NMRPipe

NMRPipe includes its own implementation of the IST algorithm similar to IST-D discussed above. More information is available at https://www.ibbr.umd.edu/nmropy/nus.html

• MddNMR

MddNMR is provided by the Swedish NMR Centre (Gothenburg) (16,77) and can be downloaded from the site http://mddnmr.spektrino.com/, where there is also an instruction manual, example data and scripts. qMDD provides a graphical user interface to the MddNMR programme allowing easy editing of scripts. The package allows IST, IRLS, Low rank (for 2D spectra) and MDD (not covered in this review) reconstructions of NUS data and integrates with NMRPipe.

• NESTA-NMR

NESTA-NMR (52) implements the NESTA algorithm (78) allowing regularisation using ℓ_1, reweighted ℓ_1 (IRL1) and Gaussian smoothed ℓ_0 terms. It integrates with NMRPipe and can be accessed, along with documentation at http://nestanmr.com/.

• Cambridge CS

Cambridge CS is provided by the authors and is available on request (15,18). It implements a number of algorithms including ℓ_1-based methods (IHT and IST) as well as reweighted methods (IRL1). The programme uses a GUI to facilitate set-up of processing scripts. Full processing can be carried out in Cambridge CS but import from and export to the NMRPipe format is also possible.

• Bruker TopSpin

TopSpin implements versions of the IST and IRLS algorithms, along with MDD processing.

Many of the packages described above are available on NMRbox (79) enabling easy testing of the packages without the complexities of installing individual packages. In addition, many other
packages are available for other NMR data processing methods which are not described in this review.

Guidelines

While each processing package has its own particular requirements some general guidelines are presented here.

1) The general outline for NUS data processing is to process the data in the direct (acquisition dimension), which is fully sampled using the FFT. This is followed by reconstruction in the indirect dimension(s).

2) The direct dimension must be appropriately phased. This can be achieved by FFT in the direct dimension followed by viewing the data as a 2D cube and phasing the first row. However, most software allows full spectral processing using the FFT in all dimensions with zeros replacing the skipped points. This can simplify phase correction in the direct dimension and also allows the user to check that the appropriate processing options have been applied in the indirect dimensions. For example, correct settings for frequency discrimination, phasing for any pre-calculated delays in the indirect dimensions and if necessary appropriate window functions, should be checked at this stage before starting CS reconstruction. We recommend this latter approach. The speed of the FFT, even for large datasets, means this is not a time-consuming approach.

3) Once correct settings have been identified for the indirect dimensions as described in 2), the processing method of choice can be applied. For 2D and 3D reconstructions, CS reconstruction times are on the order of seconds to minutes for a 2D and around 5 to 30 mins for a 3D using standard computer hardware, with multi-threading enabled, e.g. (13). In all cases reconstruction times can be shortened by limiting the maximum number of iterations. While this will be detrimental to the reconstruction quality, it can be used as a preliminary test to check that the reconstruction is proceeding correctly, before proceeding with full reconstruction. This may be particularly useful for 4D
spectra where reconstruction times are on the order of hours, perhaps around 0.5–1 day for larger spectra.

4) Spectra can also be checked by processing during acquisition, although the quality of the spectral appearance will depend on the number of points acquired. Sampling lists can be produced in a randomised order: in this case, reconstruction before the experiment has completed provides a more realistic indication of the resolution, compared to an ordered list, since a mixture of longer and shorter time-points will have been acquired. In this case, it is also possible to stop acquisition earlier once the desired quality is achieved, although this requires an option in the processing software to ignore the unacquired data points during the reconstruction.

Conclusion

CS reconstruction techniques have become increasingly popular in NMR spectroscopy enabling spectroscopists to benefit from NUS sampling to carefully balance resolution, sensitivity and experiment time parameters. These approaches enable dramatic improvements in resolution compared to FT reconstruction, and allow researchers to access higher dimensional experiments, with the potential for new experiment types and increasingly rich data. Furthermore, due to the increased sampling requirements of high field machines, these data processing techniques will enable the full benefits of such high field spectrometers to be realised. A variety of different reconstruction algorithms can be used for CS reconstructions, which are implemented in a range of different readily-available software packages. Many of these packages enable researchers to artificially generate an undersampled data set from a fully sampled one enabling testing of algorithms and sampling schedules before applying to ‘real’ samples. CS-NUS reconstruction techniques are now in widespread use in NMR laboratories around the world and we anticipate many exciting developments in the years to come.

Acknowledgements

The authors thank Robert Tovey and Dr. Bogdan Roman for useful discussions.
References

24. Thiele CM, Bermel W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). *J Magn Reson.* 2012;216:134–43.

53. Stern AS, Donoho DL, Hoch JC. NMR data processing using iterative thresholding and

Time

Amplitude

High frequency sampling
Low frequency sampling
600 MHz, time domain

600 MHz, frequency domain

1 GHz, time domain

1 GHz, frequency domain
Overlay of convolution and undersampled FFT

Sampling schedule

Point spread function

Zero-padded undersampled FID

Overlay of convolution and undersampled FFT
FT ns = 16

CS-IHT, 40% NUS, ns = 40

64Ala 65Glu

64Ala 65Glu

64Ala 65Glu

64Ala 65Glu

(F3 128.40 ppm) (F3 121.16 ppm)

(F3 128.40 ppm) (F3 121.16 ppm)

(F3 128.40 ppm) (F3 121.16 ppm)

(F3 128.40 ppm) (F3 121.16 ppm)
110Leu\(\delta\)b

74Ile\(\delta\)1

77Ile\(\delta\)1

4D NUS

2D HMQC

4D RQD-NUS

0.603 ppm/26.63 ppm